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CLINICAL EPIDEMIOLOGY AND POPULATION HEALTH 
Key Points – Multivariable Modeling 

Correlation 
A simple way to assess the relationship between two continuous variables is to look for correlation.  
Plot the values of the two variables on a graph.  The Pearson Correlation Coefficient (R) is a 
statistical method for quantifying the correlation between the two variables.  R comes out as a value 
between -1 and +1.  The sign (+) or (-) indicates positive or negative slope.  The closer that R is to 1 
(either sign) the stronger the correlation.  

Why multivariable analysis? 
Multivariable analysis, like stratified analysis, allows us to isolate the relationship between two 
variables, holding all other variables constant.  In stratified analysis, we stratify by a variable that we 
suspect might be a confounder (e.g. age), and look at the exposure-outcome relationship for different 
age strata.  If the stratum-specific RRs differ from the crude RR, then the exposure-outcome 
relationship is confounded by age.  But, what if we are interested in considering age, sex, and hair 
color (and maybe other variables) as possible confounders of the exposure-outcome relationship?  
Stratified analyses become unwieldy, so we instead turn to multivariable analysis, which can be 
thought of as multiple, simultaneous stratified analyses. 

Fundamentally, regression models fit a mathematical equation to predict the value of an outcome (y) 
based on values of predictor variables (x1, x2, x3…).  We fit the best equation we can to the data we 
have and then can use it to predict the outcome of y for new values of x we might encounter.  

Three main types of multivariable analysis  depends on the outcome variable: 
Type of regression Outcome variable 
Linear Continuous (interval) 
Logistic Dichotomous (yes/no) 
Proportional hazards Length of time until outcome 

Linear Regression 
Let’s say we want to predict blood pressure for all people, but we can only study a sample of 200.  

First, start with our data.  Examine the association with 1 predictor: age (x axis) and BP (y axis).   We 
could fit the best straight line we could [y = intercept + βx]  to these data and we’d use this to predict 
the BP for others in the population.  BUT…our data points do not fall exactly on the line. We have 
residual error in our prediction that we’d like to reduce. So, the equation is actually y = intercept + βx 
+ residual error.

Then, imagine adding BMI to the model by creating a third axis for the graph.  If BMI is a useful 
predictor (in addition to age), the data points will be closer to the line (less residual error) – a more 
accurate prediction.   

y = intercept + β1 x1 + β2x2 + residual error (where x1 is age and x2 is BMI).  

Each β is called a parameter estimate.  In linear regression, for a given change in x1 we multiply it by 
β1 to get the change in y, accounting for all of the other variables in the model for this individual.  In 
this example the units of β are (mm Hg of BP/year of age). 
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One can then do this with many variables.  This is difficult to visualize but conceptually one is simply 
adding more and more axes to the graph in multidimensional space in order to enable us to fit the 
observed data as closely as possible to an equation.  These are very powerful techniques used 
commonly in medical research, but they do have many embedded assumptions that warrant 
consideration when assessing their validity. 

Note:  
• We can include categorical variables as predictors (e.g. male or female gender) by assigning

them values like 0 and 1.
• One of the underlying assumptions is that the relationship between the predictor of interest

and the outcome is a straight line.  This might not always be true! There are other
assumptions as well that we won’t focus on here.

Logistic Regression 

Think about fitting a straight line to a dichotomous outcome (like developing cancer or not) -- 
essentially a bunch of 1’s and 0’s.  Fitting a straight line won’t work. 

Instead, we fit an equation to predict the odds of an individual having the outcome.  (Recall that odds 
are the ratio of the probability of an event happening over it not happening, or:  p/1-p).  And, rather 
than a linear association, we assume a logarithmic relationship. 

   p__  = e intercept + β1x1 + β2x2 + residual error

 1 – p 

then, if we take the natural log of both sides, the equation is that for a line (similar to linear 
regression), we’ve just made the outcome the ln(odds): 

ln(p/1-p) = intercept + β1 x1 + β2x2 + residual error 

(This looks scary, but breathe deeply…).  All this means is: 

• As in linear regression, we use our data to create the best equation (with the smallest
residual error) and that gives us the parameter estimates (β) that go with each predictor.

• Then, if we are given new values for x1 and x2, we can calculate the odds of an individual
getting the outcome.

• Note that in logistic regression, β has no units, but eβ is the odds ratio associated with each
predictor variable, in predicting the odds of the outcome.

• The predictor variables may be categorical (e.g., eβ1 could be the odds of developing lung

cancer in males vs. females) or an interval variable (e.g., eβ2 could be the odds of getting
lung cancer for each additional kilo of body fat).

• As always, if an odds ratio is 1.0 there is no effect,  OR > 1 indicates a positive association
(higher likelihood of outcome), OR <1 indicates a negative association (lower likelihood of
the outcome).

• And, if you have several odds ratios from independent predictors, they can be multiplied to
provide an overall estimate of the odds of the outcome.
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Proportional Hazards Models (aka. Cox Regression, Survival Analysis) 
Analogous to logistic regression, but used when the outcome is time to a dichotomous event (like 
death, or relapse), which allows you to include subjects with varying length of follow-up time (i.e., 
censoring). The outcome is an estimate of relative risk called a hazard ratio, which is the probability of 
the event (e.g. dying) during a particular time interval, given that a subject has survived until that time. 
Hazard ratios are not as intuitive to interpret – in the literature they are often referred to it as a “rate.” 
The math is complex, but it yields coefficients for predictor variables that are exponentiated to hazard 
ratios (analogous to taking eβ to get the odds ratio for logistic regression). Hazard ratios can be
interpreted almost exactly like odds ratios in logistic regression (1.0 means no effect, > 1 a positive 
association, <1 a negative association with the outcome). Just like the models above, proportional 
hazard models can include several predictor variables at once to control for the effects of all of the 
other variables.  

Final notes 

Multivariable techniques are complex, powerful, and very frequently used.  We all need to be savvy 
consumers of results of these models.  Here are some issues to keep in mind: 

• The intent of a model can be primarily explanatory or predictive.  In the former, we seek 
information about potential causes of an outcome.  In a predictive model, we just want to use 
available data to most accurately predict an outcome variable for a new individual—we may 
be less concerned about whether the predictors are causes or associations.

• As in all statistical tests, we are making inferences from a sample.  If we have observed too 
few individuals in our sample we will be less confident about the conclusions we draw.  We 
need enough outcome observations (at least 10-20 per predictor variable included) to make 
the model valid.

• We use statistical tests that are similar to those we have studied previously to determine the 
confidence interval around a parameter estimate β derived from a multivariable model, or can 
test (at a given level of alpha error) the hypothesis that a predictor is associated with the 
outcome of interest.

• Choosing which variables to include in a multivariable model is complex, and a bit of an art. 
Generally, we want to include those that:

o we know from other research to be important
o add to the ability of the model to explain or predict the outcome
o whose inclusion changes the parameter estimates of the main predictor(s) of interest 

substantially (a common rule of thumb is more than 10%), since this suggests that the 
additional variable is a confounder of the exposure-outcome relationship.

• Effect modification won’t be apparent from a regression model unless you look for it.  The 
simplest way is to stratify the data on the potential effect modifier, run the same model on 
each stratum, and see if the effect estimates for predictor variables of interest differ within 
strata.  For example, if you are looking for effect modification by age, you would separately 
examine the relationship between BMI and blood pressure among those under 65 years and 
among those 65 and older.  If the β coefficient for BMI is at least 10% different in the older vs. 
younger individuals, effect modification exists, and you would report the stratum specific 
results. There are other methods for addressing “interactions” between variables that are 
beyond the level of this course.      


